

Resolution No.:

Bharatiya Vidya Bhavan's M. M. College of Arts, N.M. Institute of Science, H.R.J. College of Commerce. (Bhavan's College) Autonomous (Affiliated to University of Mumbai)

Syllabus for: S.Y.B.Sc. Biotechnology

Program: B.Sc. Program Code: BH.US Course Code: (BH.USBT)

Choice Based Credit System (CBCS) with effect from academic year 2022-23

Program Outcomes – UG Programme in science

The B.Sc. programme is formulated based on the inputs received from the members of Board of Studies of Bhavan's College (Autonomous) and is geared meets the standards prescribed by general science education. Our students are allowed to choose from any of the three subjects from the cluster of physics, chemistry botany, zoology, statistics mathematics and microbiology. Some learning outcomes include:

- **PO1. Disciplinary Knowledge**: Capable of demonstrating comprehensive knowledge and understanding of one or more other disciplines that form a part of an undergraduate programme of study. This programme helps students in building a solid foundation for further higher studies and research
- **PO 2. Critical Thinking & Competency in Skills**: Take informed actions after identifying the assumptions that frame our thinking and actions. Critically evaluate practices, policies and theories by following scientific approach to knowledge development. Obtain proficiency in analytical reasoning, critical understanding, analysis and synthesis in order to solve theoretical and practical problems. This can orient students towards applications of their subject in other disciplines and, can also be utilized in modelling and solving real life problems.
- **PO3:** Communication Skills: Ability to express thoughts and ideas effectively in writing and orally; communicate with others using appropriate media; confidently share one's views and express herself/ himself; demonstrate the ability to listen carefully; and present complex information in a clear and concise manner to different groups.
- **PO 4. Social Interaction**: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group and act together as a group or a team in the interests of a common cause. Elicit views of others, mediate disagreements and help reach conclusions in group settings.
- **PO 5: Environment and Sustainability**: Understand the issues of environmental contexts and sustainable development.
- **PO6:** Interdisciplinary and Research Skills: A sense of inquiry and capability for asking relevant/ appropriate questions, Ability to recognize cause- and- effect relationships, define problems, formulate hypotheses, interpret and draw conclusions from data, ability to plan, execute and report the results of an experiment or investigation which will enable them to apply one's learning to real life situations
- **PO7: Proficiency in Employments**: This programme will help students to enhance their employability for Government jobs, related to science, data analysis jobs, and jobs in various other public and private enterprises.

PROGRAM SPECIFIC OUTCOMES

	DESCRIPTION
	A student completing Bachelor's Degree in B.Sc. program in the subject of
	Biotechnology will be able to:
PSO-1	Understand the basic principles of Biochemistry, and Biophysics
PSO-2	Understand the basic concepts of Product chemistry and nanotechnology
PSO-3	Understand the basic concepts of Immunology and medical microbiology
PSO-4	Understand and to learn different fields of environmental biotechnology and
	cytogenetics
PSO-5	To gain the knowledge of process of basic Molecular Biology and its application
	in biotechnology and genetic engineering.
PSO-6	Understand the basics of bioprocess technology and molecular dignosticss

PROGRAM OUTLINE

SEM	COURSE CODE	COURSE TITLE	Course Type	CREDITS
III	BH.USBT301	BIOPHYSICS-I	Core Subject	2
III	BH.USBT302	APPLIEDI CHEMISTRY I	Core Subject	2
III	BH.USBT303	IMMUNOLOGY	Core Subject	2
III	BH.USBT304	CELL BIOLOGY & CYTOGENETICS	Core Subject	2
III	BH.USBT305	MOLECULAR BIOLOGY & GENETIC	Core Subject	2
		ENGINEERING		
III	BH.USBT306	BIOPROCESS TECHNOLOGY	Skill	2
			Enhancement Elective	
III	BH.USBT307	RESEARCH METHODOLOGY AND SCIENTIFIC COMMUNICATION	General Elective	2
III	BH.USBTP301	Practicals of USBT301, USBT302	Core Subject Practicals	2
III	BH.USBTP302	Practicals of USBT303, USBT304	Core Subject Practicals	2
III	BH.USBTP303	Practicals of USBT305, USBT306	Core Subject and Skill Enhancement Elective Practicals	2
IV	BH.USBT401	BIOCHEMISTRY	Core Subject	2
IV	BH.USBT402	APPLIED CHEMISTRY II	Core Subject	2
IV	BH.USBT403	MEDICAL MICROBIOLOGY	Core Subject	2
IV	BH.USBT404	ENVIORNMENTAL BIOTECHNOLOGY	Core Subject	2
IV	BH.USBT405	BIOSTATISTICS AND BIOINFORMATICS	Core Subject	2
IV	BH.USBT406	MOLECULAR DIGNOSTICS	Skill Enhancemen Elective	2
IV	BH.USBT407	ENTERPRENEURSHIP DEVELOPMENT	General Elective	2

IV	BH.USBTP401	Practicals of USBT401, USBT402	Core Subject	2
			Practicals	
IV	BH.USBTP402	Practicals of USBT403, USBT404	Core Subject	2
			Practicals	
IV	BH.USBTP403	Practicals of USBT405, USBT406	Core Subject and	2
			Skill Enhancemen	
			Elective Practicals	
		TOTAL		20 + 20

PREAMBLE

Twenty First Century is known as the 'Century of Biotechnology'. Biotechnology is one of the youngest branches of Life Science, which has expanded and established as an advanced interdisciplinary applied science in last few years. Biotechnology at the core envisages the comprehensive study of Life and the Interdisciplinary potential of Biotechnology has led to a unique status for Biotechnology in Research and Industry.

The socio-economic potential of Biotechnology is well established which has almost become synonymous with modern development. Biotechnology has its applications in almost every field touching practically every human activity. The applied aspect of Biotechnology is now getting established with its applications in Industry, Agriculture, Health and Environment, Biotechnology is the lead science expanding exponentially.

Biotechnology demands a trained, skilled human resource to establish the Industry and Research sectors. The field is novel and still expanding which demands inputs in Infrastructure and Technology. The global and local focus is on developing new technological applications are fast growing. Biotechnology sector in Research and Industry is expanding which is set to augur the next major revolution in the world.

The demand for trained workforce in Biotechnology is ever growing in Fundamental Research and Industry Sector. Academic and Research Sectors also require interdisciplinary trained manpower to further the Biotechnology Revolution.

The need of the hour is to design appropriate syllabi which keeps pace with changing times and technology with emphasizes on applications while elucidating technology in depth. The present Syllabi is Restructured anticipating the future needs of Biotechnology Sector with more emphasis on imparting *hands-on* skills. The main thrust is laid on making syllabus compatible with developments in Education, Research and Industrial sectors. The Theory and Practical course in new restructured course will lead to impart *skill-set essentials* to further Biotechnology Sector.

The restructured syllabus combines basic principles of Physical, Chemical and Biological sciences in light of advancements in technology. The curriculum aims to impart basic knowledge with emphasis on its applications to make the students industry ready.

SEMESTER III

Programm	e: B.Sc. Bioto	echnology		Sem	ester: III
Course:	S.Y.B.Sc. : B	iophysics		Cou	rse Code: BH.USBT301
	Teaching	g Scheme		Evaluat	ion Scheme (Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial(Pe riods per week per batch)	Credits (Theory +Practical)	Continuous Interna Assessment (CIA) (CIA-I & II)	End Semester Examination (ESE)
03	03	NIL	2+1=03	20+20=40	(Marks: 60)

Course Objectives: The objective of this course is to have a firm foundation of the fundamentals and applications of current biophysical theories.

Course Outcomes: By the end of the course the student will be able to:

• Relate principles of Physics to applications and techniques in the field of Biology such as Microscopy, Spectroscopy and Electrophoresis.

	INDEX	
Module	Description	No of Lect.
1	Optics and Electromagnetic Radiations	15
2	Sound, Magnetism and Fluid Dynamics	15
3	Electrophoretic Techniques	15
	TOTAL	45

Units	Detailed descriptions	Lecture period /unit
UNIT I Spectroscopy and Microscopy	Spectroscopy : Types and Properties of Spectra; Basic Laws of Light Absorption. Spectrophotometer:-Principle, Instrumentation and Applications; UV- Vis Spectrophotometer, Single and Dual Beam Spectrophotometer. Microscopy: Types of Microscopy; Electron Optics; Electron Microscopy- Preparation of Specimen, SEM, TEM and Immuno-Electron Microscopy. Fluorescence Microscopy.	15
UNIT II	Sound:	15
Sound, Magnetism and Fluid Dynamics	Types of Sound Waves - Audible, Ultrasonic and Infrasonic Waves; Doppler Effect; Applications of Ultrasonic Waves. Magnetism:	10
J	Magnetic Field; Nuclear Magnetism and Biomagnetism. Fluid Dynamics : <i>Viscosity:</i> Definition Flow of Liquids through Capillaries; Stokes' Law; Terminal Velocity. Determination of ' η ' by Falling Sphere Method; Viscosity Estimation by Oswald's Viscometer. <i>Surface Tension:</i> Definition - Surface Tension and Surface Energy; Capillary Action; Angle of Contact; Wettability; Temperature Dependence of Surface Tension. Applications in Biology.	

Unit III	Electrophoresis:	15
Electrophoretic Techniques	Migration of Ions in an applied electric field; Factors affecting Electrophoretic Mobility; Moving Boundary Electrophoresis; Principle of Electrophoresis; Supporting Matrix; Paper Electrophoresis; AGE; Native and SDS PAGE (reducing and non-reducing, continuous and discontinuous);IEF and 2D PAGE. Staining and Detection Methods; Gel-Documentation.	
	Applications in Biology. TOTAL	45

- 1. Essential Biophysics, Narayanan, New Age Publ
- Handbook of Molecular Biophysics (Methods & Application), 2009, HG Bohr, Wiley
 Principles & techniques of Biochemistry & Molecular Biology, Wilson & Walker.

Continuous Assessment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks

Programm	e: B.Sc. Biote	echnology			Semes	ster: III
Course:	S.Y.B.Sc. : A	PPLIED CHE	MISTRY-I		Cours	se Code: BH.USBT302
	Teaching	g Scheme		Eva	aluatio	n Scheme (Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial(Pe riods per week per batch)	Credits (Theory +Practical)	Continuous In Assessment (C (CIA-I & I	CIA)	End Semester Examination (ESE)
03	03	NIL	2+1=03	20+20=4	0	(Marks: 60)

Course Objectives: The objective of this course is to have a firm foundation of the fundamentals and applications of Organic and Green Chemistry.

Course Outcomes: By the end of the course the student will be able to:

• Develop an understanding of the different aspects of Organic and Green Chemistry.

• Discuss role of Organic Compounds in Biology and Synthesis of Organic Compounds.

• Discuss role of Green Chemistry and its application in Industry.

	INDEX	
Module	Description	No of Lect.
1	ORGANIC CHEMISTRY	15
2	SYNTHESIS OF ORGANIC COMPOUNDS	15
3	GREEN CHEMISTRY AND SYNTHESIS	15
	TOTAL	45

Units	Detailed descriptions	Lecture period /unit
UNIT I Organic Chemistry	Introduction to Types of Organic Reactions :Types of addition, elimination and substitution reactionEssential and Non-essential Elements in Biological Systems.Role of Metal Ions in Biological Systems.Metal Coordination in Biological Systems :Enzymes, Apoenzymes and Coenzymes. Biological Role ofMetalloenzymes wrtMyoglobins, Haemoglobin.Biological Role of Carboxypeptidases, Catalases and Peroxidases.Application of enzymesStructure and Function :Di-oxygen Binding, Transfer and Utilization; Metal Complexes in	15
UNIT II Synthesis of Organic Compounds	Medicines.Synthesis of Organic Compounds :Criteria for Ideal Synthesis; Selectivity and Yield.Linear and Convergent Synthesis and Multicomponent Reactions.Microwave Assisted Organic Synthesis(microwave assistedsynthesis of nanomaterials), Ultrasound in Synthesis(sonochemicalsynthesis of nanomaterials) and Polymer supported Synthesis.Retro synthesis.	15
UNIT III	Green Chemistry and Synthesis: Introduction to Green Chemistry Principles of Green Chemistry.	15

Green Chemistry	Green Synthesis in I	maasa y.	
	Green Materials, Gre	en Reagents, Green Solvents and Green	
		cial applications of all green reagents,	solvents,
<u> </u>	materials and cataly	yst)	45
	TOTAL		45
Reference books			
Organic Chemistry, R	R.T. Morrison, R.N.	Boyd and S.K. Bhatacharjee, 7th Editi	ion, Pearson Education (2011)
•		d C.B. Fryhle, 9th Edition, John Wiley	* & Sons, (2008)
		mistry, 2nd edition (2006)	
		$TV = A^{\text{III}}$ edition (2013)	
U.Satyanarayan Princ			
Nanotechnology princ	ciples and practices,	, 3 rd edition Dr. Sulbha kulkarni, 3rd e	
Nanotechnology prine Himalaya publication	ciples and practices, n, College organic c		on (2019)
Nanotechnology prine Himalaya publication	ciples and practices, n, College organic c ca Cavalieri Sonoch	, 3 rd edition Dr. Sulbha kulkarni, 3 rd e chemistry textbook T.Y.B.Sc 13 th edition hemical Production of Nanomaterials	on (2019) (2017)
Nanotechnology prine Himalaya publication	ciples and practices, n, College organic c ca Cavalieri Sonoch	, 3 rd edition Dr. Sulbha kulkarni, 3 rd e chemistry textbook T.Y.B.Sc 13 th editio	on (2019) (2017)
Nanotechnology prine Himalaya publication	ciples and practices, n, College organic c ca Cavalieri Sonoch Details	, 3 rd edition Dr. Sulbha kulkarni, 3 rd e chemistry textbook T.Y.B.Sc 13 th edition hemical Production of Nanomaterials	on (2019) (2017)
Nanotechnology prind Himalaya publication Kenji Okitsu Franceso	ciples and practices, n, College organic c ca Cavalieri Sonoch Details o ssment	, 3 rd edition Dr. Sulbha kulkarni, 3 rd e chemistry textbook T.Y.B.Sc 13 th edition hemical Production of Nanomaterials of Continuous Assessment (CIA)	on (2019) (2017)

Programme: B.Sc. Biotechnology				Seme	ster: III	
Course: S.Y.B.Sc. : IMMUNOLOGY				Cours	se Code: BH.USBT303	
Teaching Scheme				Ev	aluatio	n Scheme (Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial(Pe riods per week per batch)	Credits (Theory +Practical)	Continuous In Assessment (C (CIA-I &)	CIA)	End Semester Examination (ESE)
03	03	NIL	2+1=03	20+20=4	10	(Marks: 60)
Course Ob	inativos.	•		•		•

Course Objectives:

The objective of this course is to familiarize students with the Immune Effector Mechanisms and various Immuno Techniques

Course Outcomes:

By the end of the course the student will be able to:

1. Understand the role of different types of Cells, Effector Molecules and Effector Mechanisms in Immunology.

3. Differentiate the precipitation and agglutination reactions using suitable examples and effectively determine various tests used for detection of antigens.

2. Understand the principles underlying various Immunotechniques.

INDEX					
Module	Description	No of Lect.			
1	The Immune System	15			
2	Cell Receptors	15			
3	Immuno Techniques	15			
	TOTAL	45			

Detailed syllabus					
Units	Detailed descriptions	Lecture period /unit			
UNIT I The Immune System	Primary and Secondary Lymphoid Organs. Complement System- Classical, Alternate and Lectin; Regulation and Biological Effects of Complement System; Deficiencies of Complement System	15			
UNIT II Cell Receptors:	T-cell Receptor Complex : Structure and Activation. MHC Classes - Structures and Peptide Interactions; Class I and II Antigen Presentation - Endocytic and Exocytic Pathways; B-cell Receptor : Structure, Maturation and Activation B-T Cell Interaction (B-T cell Cooperation).	15			
UNIT III Immuno- Techniques	Precipitation Reactions : Immunoprecipitation, Immunoelectrophoresis, CIEP, Rocket Electrophoresis and 2-D Immunoelectrophoresis. Agglutination Reactions : Passive, Reverse Passive, Agglutination Inhibition.	15			

(Coomb's Test [.] (Complement Fixation Tests,	
	RIA, ELISA, EL		
		nmunofluorescence, Flow Cytometry.	
	,	Antigen-Antibody Reactions.	
	TOTAL		45
Reference books			
1. Judy Owen, Jen	ni Punt, Sharon S	Stranford, Kuby immunology,7th edition (2012	c), Freeman and
Co., NY			
2. Sudha Gangal a	nd Shubhangi So	ntakke, Textbook of basic and clinical immuno	ology, 1st edition (2013),
University Press, I	ndia		
3. Male, Jonathan	Brostoff, David F	Roth, Ivan Roitt, Immunology, 7th edition (200)6), David Mosby,
3. Male, Jonathan USA.	Brostoff, David F	Roth, Ivan Roitt, Immunology, 7th edition (200)6), David Mosby,
USA.		Roth, Ivan Roitt, Immunology, 7th edition (200 on to Immunology Narosa Publishing Hous)6), David Mosby,
USA.	ition, Introductio		96), David Mosby,
USA. 4. C V Rao , 5 th ed	ition, Introductio Detail	on to Immunology Narosa Publishing Hous Is of Continuous Assessment (CIA)	
USA.	ition, Introductio Detail	on to Immunology Narosa Publishing Hous	06), David Mosby, Marks
USA. 4. C V Rao , 5 th ed	ition, Introductio Detail	on to Immunology Narosa Publishing Hous Is of Continuous Assessment (CIA)	

Programme: B.Sc. Biotechnology Semester: III							
Course:	S.Y.B.Sc.	: CELL BIOLO	GY AND CYTC	GENETICS	Cours	e Code: BH	.USBT304
	Teach	ing Scheme		Ev	aluatio	n Scheme (1	Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial er (Periods per week per batch)	Credits (Theory +Practical)	Continuous Internal Assessment (CIA)End Semester (ESE)(CIA-I & II)(ESE)		er Examination	
03	03	03 NIL 2+1=03 20+20=40 (M				larks: 60)	
biology an Course Out By the end o <i>1</i> . develop an	tive of th d cytogen comes: of the cours n understat		vill be able to: toskeleton and	l cell membra	ane.		mentals of cell
	e Structure	and Significar		type of Chro			
Module	Deser	intion		7		No	of Lect.
1 1		ription Skeleton					15
2	-	Cycle and Co	ell Division				15
		genetics					15
	Cytu	genetics		т	OTAL		45
Detailed sy Units		ailed descripti	ions				Lecture period /unit
UNIT I Cytoskele	ton Mic Rol Intr Moi of Mic Diss Slid Nor	acellular Motil tor Proteins: Ki Microtubules.	ucture and C s, Structural ity. inesins, Dynei Microtubul Structure, C tor Protein: Model. Actin ity. Intermedi	omposition. Support In; MTOCs. I les in Cili Composition, Myosin. Mu Binding Pro ate Filaments	MAPs: and C Dynamic ia and Asser scle Co teins: E s :Struct	Functions- ytoskeleton Properties Flagella. mbly and ontractility: xamples of ure and	15
UNIT II 0 Cell cycle and 1 Cell division: 1 0 0 0 0 0 0 0 0		leolus and chro l Cycle: G1, S, ges, Mitotic app nificance. Meio r and chaisma f	logy, nuclear envelope, nucleoplasm, omatin. , G2 and M phases, Check points. Mitosis: oparatus, cytokinesis, Mitogens and Inhibitors, osis: Stages, Synaptonemal complex, crossing formation, Significance. Cell senescence and cosis): Programmed cell death, Mechanism of			15	

UNIT III	Cytogenetics:	15
Cytogenetic	Structure and Significance of Special type of Chromosomes:	
s	Polytene Chromosome - Salivary gland chromosome in	
	Drosophila, Lampbrush chromosome in amphibian Oocyte.	
	Supernumerary B Chromosome.	
	Sex Linkage: Definition of sex linkage, Meiotic behavior of	
	chromosome and non - disjunction. Sex linkage in Drosophila.	
	Sex linked genes in poultry, moths and man, Sex linked	
	inheritance in man (Colour-blindness, Haemophilia), Attached	
	X-chromosome. Extra Chromosomal Inheritance /	
	Cytoplasmic Inheritance: Characteristic features of	
	Cytoplasmic Inheritance.	
	Inheritance of: Mitochondrial DNA, Chloroplast DNA, Kappa	
	articles in Paramecium, Sigma factor in Drosophila, Shell	
	coiling in snail.	
	TOTAL	45

1. Cytogenetics, Plant Breeding and evolution by U.Sinha and Sunita Sinha, Vikas Publishing House Private, Limited, 1998.

2. Cytology, Genetics and Molecular Biology by P.K.Gupta (2002), Rastogi publications.

3. Elements of Genetics by Phundan Singh, Kalyani Publishers. 2009.

4. Principles of Genetics by E.J.Gardener, M.J.Simmons and D.P.Snustad.J.Wiley and Sons pubs (1998).

Details of Continuous Assessment (CIA)				
Continuous Assessment	Details	Marks		
Component 1 (CIA-1	Written Test	20 marks		
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks		

Programme	e: B.Sc. Biot	echnology			Seme	ster: III		
			ology & Gene	etic	Cours	Course Code: BH.USBT305		
	Engineering							
	Teachin	g Scheme		Eva	luatio	on Scheme ("	Theory)	
Lecture (Periods per week)	Practical (Periods per week per batch)	riods per (Periods (Theory Assessment (CIA) (ESE) ek per per week +Practical) (CIA-I & II)			er Examination			
03	03 NIL 2+1=03 20+20=40 (N				larks: 60)			
Engineering Course Out By the end c	ve of this co	the student w	vill be able to:			olecular Bio	logy and genetic	
-	-		ic Engineering		81			
			INDEX	X				
Module	Descri	otion				No	of Lect.	
1	Regula	tion of Ge	ne Expressi	ion in			15	
	Proka	ryotes and	Viruses					
2		-		ionin Eukar	arvotes 15		15	
3	0		-		<i>J</i> = = = = =		15	
	Dusies	Basics of Genetic Engineering TOTAL				45		
Detailed sy	vllabus			10	JIAI		73	
Units	· · · · · · · · · · · · · · · · · · ·	led descripti	ons				Lecture period /unit	
UNIT I Regulation Gene Expression Prokaryo and Virus	n of lac O trp O nin In Vi tes Lytic	okaryotes: In peron of E.co peron of E.co ruses : / Lysogenic I	li; li.				15	
UNIT II Regulation Gene Expression Eukaryot	n of RNA	In Eukaryotes : Control of Transcriptional Initiation; Gene Silencing and Genomic Imprinting; Post-Transcriptional Control; Protein Translocation RNA Interference.			15			
UNIT III Basics Genetic Engineerir	of Isolat Isolat Isolat Isolat Isolat	t ion of ge ophoresis, blo	otting, cutting		DNA,	digestion,	15	

Recombinant selection and screening methods: genetic, immunochemical, Southern and Western analysis, nucleic acid hybridization, Cloning strategies-genomic DNA libraries, cDNA libraries,		
TOTAL	45	

- 1. iGenetics- Peter Russell -Pearson Education
- 2. Genes XI, 11th edition (2012), Benjamin Lewin, Publisher Jones and Barlett Inc. USA

Details of Continuous Assessment (CIA)

Continuous Assessment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks

Programm	e: B.Sc. Biote	echnology			Semester: III
Course:	S.Y.B.Sc. : UPSTREAM				Course Code: BH.USBT306
	PROCESSI				
Teaching Scheme Ex				aluation Scheme (Theory)	
Lecture	Practical	Tutorial(Credits	Continuous	5 End Semester
(Periods	(Periods	Periods	(Theory	Internal	Examination (ESE)
per week)	per week	per week	+Practical	Assessment	t
	per	per)	(CIA)	
	batch)	batch)		(CIA-I & II))
03	03	NIL	2+1=03	20+20=	40 (Marks: 60)

Course Objectives:

The objective of this course is to understand the basic skills applied in Fermentation Technology and

build a foundation for more advanced studies in Bioprocess Technology.

Course Outcomes: By the end of the course the student will be able to

- Develop an understanding of the various aspects of Bioprocess Technology.
- Develop skills associated with screening of Industrially Important Strains
- Understand principles underlying design of Fermenter and Fermentation Process
- To understand isolation and purification of product after fermentation and assaying product to know the productivity

	INDEX					
Module	Description	No of Lect.				
1	Microorganisms in Industrial Processes	15				
2	Fermenter and Fermentation media	15				
3	Assay and recovery of product	15				
	TOTAL	45				

Detailed	syllabus	
Units	Detailed descriptions	Lecture
		period /unit
1	Microorganisms in Industrial Processes	15L
i.	Types of Microorganisms used in Industrial Processes: Bacteria,	
	Actinomycetes, Fungi and Algae.	
ii.	Screening and Maintenance of Strains: Primary Screening and	-
	Secondary Screening	
iii.	Strain improvement and development	
iv.	Preservation of Industrially Important Microbial Strains	-
2.	Fermenter and Fermentation media	15L
i.	Design of a fermenter : - Basic Design; Parts of a Typical Industrial	
	Fermentor,	
	Process Parameters: pH, Temperature, Aeration, Agitation, Foam,	
	pressure, dissolved oxygen, flow and load etc.	
ii.	Different types of fermenters Stirred Tank Fermenter Airlift, bubble	
	column, Deep shaft	

iii.	Fermentation Media: Components; Design and Optimization.		
	Sterilization :	_	
iv.	Sterilization of Fermenter and Fermentation Media.		
Deletion	Product Isolation and Purification. Study of Representative	Types	0
from	Fermentation Processes : Outline of Penicillin and Ethanol	fermentation	
unit:2	Production by Fermentation along with a flow-diagram	with examples	2
umt.2	Types of Fermentation: Surface and Submerged; Batch and	-	
	Continuous, Aerobic and Anaerobic.	will be includ	10
		in TY	a
		applications	
3	Assay and recovery of product	15L	
i.	Introduction of DSP		
	1. Solid liquid separation		
	Foam separation Precipitation –		
	Centrifugation (Basket, Tubular bowl, Multichamber),		
	Chromatography (Application of adsorption, Ions exchange, Seize		
	exclusion and affinity chromatography)		
	Filtration (Batch filtration (Plate and frame) and Continuous		
	filtration (Drum filter)		
	2. Cell disruption- physical and chemical methods		
	3. Solvent extraction (single stage, Co-current and counter		
	current extraction)		
	4. Drying		
ii.	Assay of fermentation product	-	
	1. Physicochemical		
	2. Biological		
	TOTAL	45	
	REFERENCES:	•	
Text	book		
1 L.E.	Casida. (1991) .Industrial Microbiology. (1st ed) Wiley Publisher.John Wiley	& Sons Canada,	
Limit			
2 P.F.	Stanbury and A. Whitaker, (2003) Principles of Fermentation Technology (2n	d Edition).Elsevier	
Scien	ce Ltd		
3 A. H.	Patel (1996), Industrial Microbiology. (1st ed) Macmillan India Ltd.		
+Refe	erence book		
	Aansi, C. F. A. Bryce, (1999) Fermentation Microbiology and Biotechnology. CRC pr		
	rueger and A. Crueger. (2000). Biotechnology: A textbook of Industrial Micr	obiology.	
2nd e	dition. Panima Publishing Co. New Delhi.		

Details of Continuous Assessment (CIA)						
Continuous Assessment	Details	Marks				
Component 1 (CIA-1	Written Test	20 marks				
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks				

Programme: B.Sc. Biotechnology	Semester: III
--------------------------------	---------------

		Y.B.Sc. : RESEARCH METHODOLOGY AND Course Code: H IENTIFIC COMMUNICATION				
	Teaching	g Scheme		Evaluatio	on Scheme (Theory)	
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous Internal Assessment (CIA) (CIA-I & II)	End Semester Examination (ESE)	
03	03	NIL	2	20+20=40	(Marks: 60)	
	erstand hasic		(D)			
	erstand a gen	eral definitio	on of Research	n Design.	ify a Research Problem. its inception to its Report.	
	erstand a gen	eral definitio	on of Research	n Design. Research Study from		
	erstand a generity the overa	eral definitio 11 Process of Dition	on of Research Designing a l	n Design. Research Study from X	its inception to its Report. No of Lect.	
• Iden	erstand a genetify the overa	eral definitio 11 Process of Dition	on of Research Designing a l	n Design. Research Study from	its inception to its Report.	
Iden Module	Descrip Introdu Researce	eral definitio Il Process of Dition Iction to R ch Design	on of Research Designing a l	n Design. Research Study from X ethodology and	its inception to its Report. No of Lect.	
Iden Module 1	Descrip Introdu Researce Interpr	eral definitio 11 Process of otion otion to R oction to R ch Design retation an	on of Research Designing a D INDE2 Research Mo Id Report V	n Design. Research Study from X ethodology and	its inception to its Report. No of Lect. 15	
Iden Module 1 2	Descrip Introdu Researce Interpr	eral definitio 11 Process of otion otion to R oction to R ch Design retation an	on of Research Designing a D INDE2 Research Mo Id Report V	n Design. Research Study from X ethodology and Vriting	its inception to its Report. No of Lect. 15 15 15 15 15	
Iden Module 1 2 3 Detailed s	Descrip Introdu Researd Interpr Scientif	eral definitio Il Process of otion oction to R och Design retation an fic Writing	on of Research Designing a D INDE2 Research Ma ad Report V g and Com	n Design. Research Study from X ethodology and Vriting munication Skills	its inception to its Report. No of Lect. 15 15 15 15 15	
Iden Module 1 2 3	Descrip Introdu Researd Interpr Scientif	eral definitio 11 Process of otion otion to R oction to R ch Design retation an	on of Research Designing a D INDE2 Research Ma ad Report V g and Com	n Design. Research Study from X ethodology and Vriting munication Skills	its inception to its Report. No of Lect. 15 15 15 15 15	

		period /unit
UNIT I	Meaning of Research; Objectives of Research; Types of Research;	15
	Research Approaches; Significance of Research; Research Methods	
Introduction to	versus Methodology; Research Process; Criteria of Good Research;	
Research		
Methodology	Meaning of Research Design; Need for Research Design; Features of	
and Research	a Good Design; Important Concepts Relating to Research Design;	
Design	Basic Principles of Experimental Designs;	
	Collection of Primary Data; Observation Method; Interview Method; Collection of Data through Questionnaires; Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method	
UNIT II	Meaning of Interpretation, Why Interpretation?, Technique of Interpretation, Precautions in Interpretation, Significance of Report	
Interpretation	Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a	
and Report	Research Report, Precautions for Writing Research Reports.	15
Writing	Research Report, r recautions for writing Research Reports.	
Unit III	Communication Skills	15
Scientific		
Writing and		

Comment	Interdention to Communication Communication Elements	
Communicati	Introduction to Communication – Communication Elements	
on Skills	Verbal and Non-Verbal Communications.	
	Principles of Effective Communication,	
	Oral Presentations Scientific Reading, Writing & Presentation Scientific Writing	
	Process of Scientific Writing: Thinking, Planning, Rough Drafts	
	and Revising Contents. Introduction to Scientific Reports and Writings	
	Compilation of Experimental Data, Communication Methods in	
	Science,.	
	Writing Papers, Reviews, Bibliography	
	PlagiarismIntroduction to Plagiarism, Examples of Plagiarism	
	TOTAL	45
References :		
	1. Research methodology- C.R. Kothari	
	Details of Continuous Assessment (CIA)	
Continuous A	ssessment Details	Marks
Component	1 (CIA-1 Written Test	20 marks
Component 2		20 marks

BHAVAN'S AUTONOMOUS COLLEGE, SYLLABUS FOR SYBSc BIOTECHNOLOGY 2022-2023

<u>SEM 3 PRACTICALS</u> PRACTICALS OF BIOPHYSICS AND APPLIED CHEMISTRY

- 1. Absorption spectra of coloured compounds
- 2. Verification of beer lamberts law
- 3. Isolation of plasmid DNA culture
- 4. Extraction and isolation of plasmid DNA
- 5. Quantification of plasmid DNA
- 6. Agarose gel electrophoresis
- 7. Electron microscopy
- 8. Fluorescence microscopy
- 9. SDS page
- 10. Purification by recrystalisation
- 11. Estimation of : acetone, amide, benzoic acid
- 12. Synthesis of : acetanilide, dibenzal propanol

PRACTICALS OF IMMUNOLOGY, CELL BIOLOGY AND CYTOGENETICS

- 1. Complement fixation test
- 2. RA factor test
- 3. Immunoelectrophoresis
- 4. Hepelisa
- 5. Dot ELISA
- 6. Western blotting
- 7. Flow cytometry
- 8. Study of chromosomal aberrations
- 9. Induction of polyploidy in plants
- 10. Study of polytene chromosome
- 11. Gene mapping
- 12. Pedegree analysis

PRACTICALS OF MOLECULAR BIOLOGY AND BIOPROCESS TECHNOLOGY

- 1. Study of E.coli Diauxic Growth Curve- (Lactose and Glucose).
- 2. Study of lac Gene Expression using Blue-White Selection
- 3. Expression of β -galactosidase and Measurement of Activity.
- 4. Screening for an Alcohol Producing Strain of Microorganisms
- 5. Determination of Ethanol tolerance of alcohol producing strain
- 6. Determination of Sugar tolerance of alcohol producing strain
- 7. Lab Scale Production of Ethanol.
- a. Inoculum preparation
- b. Fermentation proper
- 8. Purification of Ethanol from Broth Culture of Saccharomyces spp. by Distillation.
- 9. Estimation of ethanol from Recovered Broth by dichromate method

SEMESTER IV

Programme: B.Sc. Biotechnology

Semester: IV

rogramme: B.Sc. Biotechnology Semester: 1v					ster: Iv				
Course: S.Y.B.Sc. :Biochemistry Course Code: BH.						USBT401			
Teaching Scheme Evaluation Sc					on Scheme (T	'heory)			
Lecture (Periods per week)	riods per (Periods per riods per (Theory Assessment		Continuous In Assessment (C (CIA-I &]	t (CIA) (ESE)		er Examination			
	batch)	batch)		`				
03	-	3	NIL	2+1=03	20+20=4	10	(Ma	arks: 60)	
Catabolism Course Out • Discuss the	ve of of Ca comes e Meta	this co arbohyc By th bolic Pa	drates, Amize end of the athways of C	no Acids, Li course the stu	pids and Nuc udent will be a s, Amino Acic	cleotid able to	es.	associated with	
1									
Module	ח	escript	ion	INDEX	A		No	of Lect.	
<u>1</u>		-	ydrate Me	taholism				15	
2			Acid Meta					15	
$\frac{2}{3}$				tide Metab	olism			15	
5		ipiu al		int mittal		OTAI	-	15 45	
					1	UIAI		43	
Detailed sy	llabu			•				Testan	
Units		Detail	led descript	ions				Lecture	
UNIT I		Carbo	hydrate Met	abolism :				period /unit 15	
Carbohy	drata		•	abolishi . iy and its Reg	ulation			15	
Metaboli		-	•	• •	holic Ferment	tation; I	Energetics of		
ETS ar		Fermentation;							
Energy			•	and its Regul					
Compoun		Gluconeogenesis; Pentose Phosphate Pathway;							
Compoun		Glyoxalate Pathway; Reductive TCA .							
		Energy Rich Compounds : ATP as Energy Currency, Structure of ATP,							
		Hydrolysis, Other Energy Rich Compounds							
		-	other than ATP like PEP, Creatine Phosphate,						
		etc.			_				
UNIT II			o Acid Breal					15	
Amino Aci				nsamination,	•	aine A	, da		
Metabolisr	n	Breakdown of Glucogenic and Ketogenic Amino Acids.							
		Amino Acids as Biosynthetic Precursors : Biosynthesis of Epinephrine, Dopamine, Serotonin, GABA, Histamine, Glutathione.							
		(Sequence of Reactions, Regulation and Metabolic Disorders of							
		the above Pathways)							
		Lipid Metabolism :				15			
UNIT III		-						15	
UNIT III Lipid and		Mobil	ization, Trai	nsport of Fatt	y Acids. ation of Satura			15	

Metabolism	Oxidation of Unsaturated Fatty		
	Acids; Oxidation of Odd Chain Fatty Acids.		
	Energy Yield, Ketone Body Breakdown to Yield Energy.		
	(Sequence of Reactions, Regulation, Energy Yield and		
	Metabolic Disorders of the above		
	Pathways)		
	Nucleotide Metabolism :		
	Degradation of Purines and Pyrimidines.		
	TOTAL	45	

- 1. Jeffory Zubey , Principles of Biochemistry, 4th edition (1997), McGraw-Hill College, USA
- David Nelson & Michael Cox, Lehninger, Principles of Biochemistry. 5th Edition (2008), W.H. Freeman and company, NY.
- 3. Donald Voet & Judith Voet , Fundamentals of Biochemistry. 3rd Edition (2008), Joh Wiley and Sons, I. USA
- 4. U. Satyanarayana & U. Chkrapani, Biochemistry 5th Edition 2019

	Details of Continuous Assessment (CIA)	
Continuous Assessment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster Presentation	20 marks

Programme: B.Sc. Biotechnology				Semes	ster: IV	
Course: S.Y.B.Sc. : Applied Chemistry-II					Cours	e Code: BH.USBT402
Teaching Scheme				Ev	aluatio	n Scheme (Theory)
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial(Pe riods per week per batch)	Credits (Theory +Practical)	Continuous Internal End Semest Assessment (CIA) (ESE) (CIA-I & II) (CIA-I & II)		End Semester Examination (ESE)
03	03	NIL	2+1=03	20+20=4	10	(Marks: 60)

Course Objectives: The objective of this course is to have a firm foundation of the fundamentals and applications of current Chemical Theories for the Physical World.

Course Outcomes: - By the end of the course the student will:

• Develop an understanding of the different aspects of Analytical Chemistry.

• Gain knowledge of Natural Product Chemistry and related acquired skills.

• Gain an understanding of basic concepts in Polymer Chemistry and Nanotechnology.

	INDEX		
Module	Description	No of Lect.	
1	Sampling and Separation Techniques	15	
2	Natural Product Chemistry And Chromatography	15	
3	3 Polymers and Nanotechnology		
	TOTAL	45	
Detailed sylla	bus		
Units	Detailed descriptions	Lecture period /unit	
UNIT I Sampling and Separation Techniques	 Sampling : Importance of Sampling and Sampling Techniques Types of Sampling - Random and Non-Random Sampling of Liquids and Gases. Hazards in sampling Separation Techniques : Solvent Extraction - Partition Coefficient and Distribution I Extraction Efficiency, Separation Factor, Role of Complexit Agents, Chelation, Ion Pair Formation, Solvation, and Soxh Centrifugation - Basic Principles of Sedimentation, factors sedimentation Chromatography: affinity chromatography and its application exchange chromatography and its applications 	Ratio, ing ilation. affecting	
UNIT II Natural Product Chemistry And Chromatograp	Natural Product Chemistry :Primary and Secondary Metabolites.Classification of Natural Products based on Bio- Synthesis.Classification of Natural Products based on Structure- AlkaPhenolics, Essential Oils and Steroids.Concept of:Ultraviolet and visible spectroscopy		

	TOTAL	45
	Effect of Nanotechnology on human health	
	Applications of Nanomaterials in cosmetics, medical field, agriculture and food	
	Biological synthesis using microbes, plant extracts protein, DNACharacterization of Nanomaterials.	
	Physical methods: high energy ball mill, melt mix, laser pyrolysis	
	Chemical method : Sol-gel method, colloidal route method	
	Synthesis:	
	Nanotubes	
	Forms of Nanomaterials : Nanoparticles, Nanofilms and	
	Nanotechnology : Introduction to Nanomaterials.	
	Polymers.	
i unoteennology	Stereochemistry of Polymers. Biodegradable	
Polymers and Nanotechnology	Introduction to Polymers.	
UNIT III	Polymers :	15
	HPTLC for Separation and Analysis of Natural Products.	
	Gas Chromatography and its Applications. Liquid Chromatography: HPLC and its Applications.	
	Chromatographic Separation of Natural Products :	
	X-ray Analysis	
	IR Spectroscopy	

Dr. Sulbha kulkarni Nanotechnology principles and practices, 3 rd edition 2015 Himalaya Publication College Analytical Chemistry textbook .T.Y.B.Sc 26th edition 2020 Jeremy Ramsden , Nanotechnology : An introduction 1st edition 2011 Vogel's Textbook of quantitative chemical analysis , 5th edition 1989 Lehninger , Principles of Biochemistry. 5th Edition (2008), David Nelson & Michael Cox, W.H. Freeman and company, NY.

Details of Continuous Assessment (CIA)

Continuous Assessment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster / Power-point presentation	20 marks

Programm	e: B.Sc. Biot		Semester: IV		
Course:	S.Y.B.Sc. : 1	MEDICAL N	MICROBIOI	.OGY	Course Code: BH.USBT403
	Teachin	g Scheme		Eva	luation Scheme (Theory)
Lecture	Practical	Tutorial(Credits	Continuous	End Semester
(Periods	(Periods	Periods	(Theory	Internal	Examination (ESE)
per week)	per week	per week	+Practical	Assessment	
	per	per)	(CIA)	
	batch)	batch)		(CIA-I & II)	
03	03	NIL	2+1=03	20+20=4	0 (Marks: 60)

Course Objectives:

The objective of this course is to gain insight into Disease Factors and Processes and Diseases Caused

by Microorganisms

Course Outcomes:

By the end of the course the student will be able to:

• List the factors playing a role in causing a disease

• Discuss the various aspects of Systemic Infections including Causative Agents, Symptoms and Prophylaxis and treatment.

• Gain the technical capability of handling, isolating and identifying various Bacteria

INDEX

Units	Detailed descriptions	Lecture period /unit
Ι	Infectious Diseases	15L
	Normal FloraFactors Affecting the Course of Infection and DiseaseMechanisms of Infection and Virulence Factors. InfectionPatterns of InfectionTypes of InfectionsSigns and SymptomsEpidemiology and Epidemiological Markers.ZoonosisNosocomial infectionsKoch's Postulates	
II	Causative organisms-I	15L
	Morphological and cultural characteristics, Pathogenesis, Lab diagnosis, prophylaxis and treatment of diseases caused by pathogen:Staphylococcus.aureus, Streptococcus.pyogenes, 	
III	Case study Causative Organisms- II	15L

Morphological and cultural characteristics, Pathoge	enesis, Lab	
diagnosis, prophylaxis and treatment of diseases ca	nused by	
pathogen:		
Escherichia.coli,		
Salmonella typhi		
Shigella sp,		
Proteus sp,		
Pseudomonas aeruginosa,		
Klebsiella pneumoniae,		
Case study		
TOTAL	45	

Note: Earlier organisms were there in syllabus in context to only one type of infection for example S. aureus for skin infections only, S. typhi for Gastrointestinal tract infections only, other complications were not included, now in revised syllabus it will be covered with case study. Case study would be a self-study topic.

References :

Text book

1. Ananthanarayan, R. and Paniker, C., (1980). Textbook of microbiology. (1st ed). Orient Longman

- 2. Talaro, K. P., & Talaro, A. (2002). Foundations in microbiology (4th ed.).Boston: McGraw-Hill.
- 3. Willey, J. M., Sherwood, L., Woolverton, C. J., & Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology.(7th ed) New York: McGraw-Hill Higher Education

Reference Book

1. Cruickshank R. (1969) Medical microbiology, (11 th ed), E & S Livingstone Limited

2. Tortora, Gerard J., et al. Microbiology, (2004). An Introduction. (8th ed.), Benjamin / Pearson.

Programme:	B.Sc.	Biote	chnology			Seme	ster: IV	
Course: S	.Y.B.S	5с. : Е	NVIRONMEN	NTAL BIOTEC	CHNOLOGY	Cours	se Code: BH.	USBT404
	Tea	ching	Scheme		Ev	aluatio	on Scheme (T	`heory)
Lecture	Practic	al	Tutorial(Pe	Credits	Continuous I	nternal	End Semester	r Examination
(Periods per	(Period	s per	riods per	(Theory	Assessment (CIA)	(ESE)	
week)	week p	er	week per	+Practical)	(CIA-I &	II)		
1	batch)		batch)		[×]	,		
03	03	;	NIL	2+1=03	20+20=	40	(M	arks: 60)
Course Outc	omes:							
By the end of	the co	ourse t	he student w	vill be able to:				
1. Understand								
2. Application	n of di	fferen	t life forms i			tion		
				INDEX	X			
Module		script					No	of Lect.
1	En	viror	nmental Po	ollution				15
2	Gle	obal	Environm	ental Prob	lems and Is	ssues		15
3			ediation					15
U		/1 UIII	culution		Т	OTAI		45
						UIAI		45
Detailed syl								
Units		Detai	led descript	ions				Lecture
								period /unit
UNIT I			r Pollution :					15
Environme			• •	l Classificatio	-		ssessment of	
Pollution			-	llutant Monit	0			
				erobic treatr		ewater		
				ste Pollution Wastes, Imp		d Waste	on Health	
				ards and Con		u wusu	on meanin,	
		-	Erosion :					
			ept, Causes a	nd Effects.				
UNIT II		Air Po	ollution :					15
Global		• •		Classification	of Air Pollu	tants; A	Air Pollution	
Environme			toring and C					
Problems	unu		House Effe		Laura Effect			
ls			rs Responsit	ble for Green I	nouse Effect	,		
				es. Ozone Deple	tion · Kvoto			
				iation; Acid F				
UNIT III			ept of Biorer					15
Bioremedia			-	n Bioremedia	tion, Mycore	mediatio	on	
2101 cincula			hytoremedia					
			mediation To					
			-	nediation in th				
	1	Dionu	amontation	and Biostimu	lation			
			-					
			toring the Ef	ficacy of Bio				45

- 1. P.S. Verma and Agarwal- S, Ecology -7th edition. Chand Publications
- 2. Rehm and Reed- Wiley, Biotechnology: Environmental Processes-
- 3. Indu Shekhar Thakur, Environmental Biotechnology

Details of Continuous Assessment (CIA)

Continuous Assessment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks

Programme	e: B.Sc. Biot	echnology			Semes	ter: IV	
Course:	S.Y.B.Sc. : H	BIOINFORM	IATICS and		Cours	e Code: BH	I.USBT405
	BIOSTATIS	TICS					
	Teaching	g Scheme		Eva	luatio	n Scheme ('	Theory)
Lecture	Practical	Tutorial	Credits	Continuous Int	ternal	End Semeste	er Examination
(Periods per	(Periods per	(Periods	(Theory	Assessment (C		(ESE)	
week)	week per	per week	+Practical)	(CIA-I & I	<i>´</i>		
	batch)	per batch)			.,		
03	03	NIL	2+1=03	20+20=40)	(N	larks: 60)
Course Obj	ectives:						
The objectiv	ve of this co	ourse is learn	ning and und	erstanding bas	ic con	cepts of Bi	oinformatics and
Biostatistics Course Out							
•			vill be able to:		nd D:-	atatistics	
	iderstanding			ioinformatics a	ina 10	stausucs.	
				biological data			
5. apply the	various statis		INDE				
Module	Descrip	tion		(No	o of Lect.
	1		amoutona	and Dialagia	al		
1			omputers a	and Biologic	al		15
	Databa	ISES					
2	BLAST	and Sequ	ence Align	ment			15
3	Biostat	istics					15
	Diostat	150105					10
				ТС	TAL		45
Detailed sy	vllabus						
Units		led descripti	ons				Lecture
Omts	Detai	ieu uesempti	0115				period /unit
UNIT I	What	is biginform	ation and its m	alation with mo	logulor	hiology	15
UNITI				elation with mo tion of Databas		•••	15
Introducti		-		NCBI), Seconda			
to Comput	110000		•	databases; Stru	•	,	
and Biolog		nce database	· · · · ·				
Databases	· 1	Specialized Databases - Protein Pattern Databases; Protein					
	-			abases (CATH			
				: DNA Sequence	ce Data	lbases	
			based on Con	nposition,			
			oinformatics.				
UNIT II		1	•	nt: BLAST and	its Typ	es;	15
BLAST an		U	ce using BLAS		1.1 1	17 1	
Sequence		-	•	d Similarity; G	iobal a	na Local	
Alignment			se Database S	•	o Soor	ance	
	-		-	Goal of Multipl	-		
	-	-		sive Methods;			
			-	Database Sear			
	-		id phylogenet		sinng, i	1111 y 515	
	1 uenu	, 1,1,5/1 ul	p-1910genet				1

UNIT III	Theory and Problems based on- Coefficient of Correlation and						
Biostatistics 1	Regression Analysis; Steps in Testing Statistical Hypothesis;						
1	Parametric Tests: z- Test – Single Mean and Two Means, t- Test						
– Single Mean, Paired and Unpaired; Chi square Test.							
	TOTAL	45					
Reference books							
•	Biostatistics. 1st edition. (2003), Chap T. Le. John Wiley, USA Biostatistics- B. K. Mahajan –Jaypee Brothers Details of Continuous Assessment (CIA)						
•	Biostatistics- B. K. Mahajan –Jaypee Brothers Details of Continuous Assessment (CIA)	Marks					
3. Methods in Bi	Biostatistics- B. K. Mahajan –Jaypee Brothers Details of Continuous Assessment (CIA) essment Details	Marks 20 marks					

Programme: B.Sc. Biotechnology					Semes	ter: IV	
Course: S.Y.B.Sc. : Molecular Dignostics					Course Code: BH.USBT406		
Teaching Scheme Evaluation Scheme (Theory)					n Scheme (Theory)		
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous Inte Assessment (CL (CIA-I & II)	(A)	End Semester Examination (ESE)	
03	03	NIL	2+1=03	20+20=40		(Marks: 60)	

Course Objectives:

The objective of this course is learning and understanding Molecular Techniques and utilizing these techniques in Diagnosis.

Course Outcomes:

By the end of the course the student will be able to:

1. Gain an understanding of the basic Principles used in Molecular Diagnosis.

2. Gain critical thinking and analytical skills to understand new Diagnostic Methods.

Module	Description	No of Lect.
1	Basics of Molecular Dignostics	15
2	Nucleic Acid Amplification Methods	15
3	Molecular Biology Based Dignostics	15
	TOTAL	45

Units	Detailed descriptions	Lecture period /unit
UNIT I Basics of Molecular Diagnostics	Introduction to Molecular Diagnostics : Overview of Molecular Diagnostics; Areas used in Molecular Diagnostics; Future Prospects - Personalized Medicine, Theranostics. Characterisation and analysis of Nucleic – Acids and Proteins : Extraction, Isolation and Detection of DNA, RNA and Proteins; Restriction Endonucleases and Restriction Enzyme Mapping. Hybridisation Techniques : Southern, Northern, Western and FISH; Markers, Probes and its Clinical Applications.	15
UNIT II	 Target amplification : PCR - General Principle; Components of a Typical PCR Reaction; Experimental Design; Primer Designing; Control of PCR Contamination and Mispriming; PCR Product Clean-up and Detection. Types of PCR used in dignostics: 	15

Nucleic Acid Amplification Methods	Reverse Transcriptase and Real Time PCR. Nested PCR Probe amplification : Ligase Chain Reaction	
UNIT III	DNA Polymorphism and Identification:	15
Molecular	RFLP and Parentage Testing;	
Biology based	RFLP and Sickle-Cell Anaemia.	
Diagnostics	Molecular Diagnostics for Infectious Diseases	
	Molecular Testing for Neisseria, Molecular Diagnosis for HIV-	
	1; Genetic Counselling and Molecular Diagnosis	
	Genetic Testing- Need and Uses; genetic Counselling.	
	Case Studies- Diagnostic Testing for Cystic Fibrosis; Fragile X	
	Diagnostic and Carrier Testing.	
	Ethical, Social and Legal Issues to Molecular - Genetic Testing	
	TOTAL	45

- 1. Molecular diagnostics- Fundamentals , methods and clinical applications Buckingham and Flaws F.A. Davis Company Philadelphia.
- 2. Molecular diagnostics for the clinical laboratorian by coleman and Tsongalis, Humana press

Details of Continuous Assessment (CIA)			
Continuous Assessment	Details	Marks	
Component 1 (CIA-1	Written Test	20 marks	
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks	

Programme: B.Sc. Biotechnology				Semester: IV		
Course: S.Y.B.Sc. : Enterpreneurship Development				Course Code: BH.USBT407		
Teaching Scheme				Evaluation Scheme (Theory)		
Lecture (Periods per week)	Practical (Periods per week per batch)	Tutorial (Periods per week per batch)	Credits (Theory +Practical)	Continuous In Assessment (C (CIA-I &)	CIA)	End Semester Examination (ESE)
03	03	NIL	2	20+20=4	10	(Marks: 60)

Objective:

To develop and systematically apply an Entrepreneurial way of thinking that will allow identification and creation of Business Opportunities.

Course Outcomes:

- By the end of the course the student will be able to: Develop an understanding of the systematic process and to select and screen a Business Idea.
- Design strategies for successful implementation of ideas.

	INDEX				
Module	Description	No of Lect.			
1	Introduction to Entrepreneurship Development	15			
2	Setting-up of an Enterprise and Planning	15			
3					
	TOTAL	45			
Detailed syll	labus				
Units	Units Detailed descriptions				
UNIT I Introduction Entrepreneu hip Developmer	Essentials of a Successful Entrepreneur	15			
UNIT II Setting-up o an Enterpris and Plannin	ial n ture as; 15				
UNIT III Marketing Sales,	15				

and I	Market Assessmen Domestic vs. Inter Methodology of N	,	
	TOTAL		45
1		ship development Is of Continuous Assessment (CIA)	
Continuous Ass	essment	Details	Marks
Component 1 (CIA-1	Written Test	20 marks
Component 2 (CIA-2)	Poster / Powerpoint presentation	20 marks

SEM IV PRACTICAL

Biochemistry & Applied chemistry Practicals

- 1. Determination of LDH activity in blood serum
- 2. Determination of cholesterol in serum
- 3. Organ gunction test: SGOT/SGPT, serum urea
- 4. Estimation of uric acid and creatinine
- 5. Detection of ketone bodies
- 6. Isolation and detection of mitochondria
- 7. Seperation of binary mixtures (3 mixtures)
- 8. Identification of oranic compound (3 compounds)
- 9. HPLC of plant secondary metabolite
- 10. GC of plant essentrial oils
- 11. HPTLC of medically important plants
- 12. Synthesis of nanoparticles

Medical microbiology and environmental biotechnology Practicals

- 1. Study of Staphylycoccus aureus
- 2. Study of E.coli
- 3. Study of Salmonella spps
- 4. Study of Shigella spps
- 5. Study of *Proteus spps*
- 6. Study of *Pseudomonos spps*
- 7. Rapid plasma reagin
- 8. Study of permanent slide- mycobacteria
- 9. Biochemical oxygen demand
- 10. Chemical oxygen demand
- 11. Isolation of bacteria from air by gravity sedimentation method
- 12. MPN analysis of water
- 13. Bioremediation of metals
- 14. Report of industrial visit

Biostatistics, bioinformatics and molecular diagnostics

- 1. Study of bioinformatics databases
- 2. Use of NCBI BLAST tool
- 3. Sequence alignment and phylogeny
- 4. Classification of proteins
- 5. Visualization of proteins using software
- 6. Handling and calibration of micropipette
- 7. Study of genomic DNA
- 8. Study of RNA
- 9. Restriction digestion of DNA
- 10. RFLP analysis
- 11. Primer designing using NCBI BLAST
- 12. DNA amplification using PCR

Sr.no	Questions on	Question	Option	Marks	Total marks
1	Unit-I	A or A and B	Any two out of three	8 or 8 marks and 7marks	15
2	Unit-II	A or A and B	Any two out of three	8 or 8 marks and 7marks	15
3	Unit-III	A or A and B	Any two out of three	8 or 8 marks and 7marks	15
4	All Units	A,B,C,D and E	Any three out of Five	5 marks each	15
				Total	60

External Examination scheme: